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Synthesis of (±)-aporphine utilizing Pictet–Spengler and
intramolecular phenol ortho-arylation reactions
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Abstract—A synthesis of the alkaloid (±)-aporphine is reported. The initial key step of the synthesis involves a Pictet–Spengler
cyclization of N-tosyl tyramine with 2-bromophenylacetaldehyde in trifluoroacetic acid. This step was followed by the second
strategic transformation a palladium-mediated intramolecular phenol ortho-arylation reaction utilizing tricyclohexylphosphine as
co-catalysts in the presence of cesium carbonate. Finally, de-oxygenation of the phenol, removal of the tosyl group and methylation
gave the desired alkaloid.
� 2004 Elsevier Ltd. All rights reserved.
Aporphines are a structurally diverse class of natural
products.1 Many members of this class of alkaloids also
demonstrate interesting and assorted biological activi-
ties.2 A common structural characteristic among many
aporphine alkaloids is the presence of hydroxy or alkoxy
groups at the 1- and 2-positions of the 5,6,6a,7-tetra-
hydro-4H-dibenzo[de,g]quinoline ring system. For
example, (±)-lirinidine, 1,3 and nuciferine, 2,4 both
contain this structural feature. Recently, syntheses of
these two aporphine alkaloids were reported that took
advantage of the oxygen functionality at the 1-position
in the key synthetic transformation.5 A palladium-
mediated intramolecular phenol ortho-arylation was
employed.6;7 However, other members of this alkaloid
class do not contain oxygen functionality at the 1- or 2-
positions, for example, (±)-aporphine, 3, and (±)-
apocodeine, 4. Herein is reported a synthesis of 38 that
utilizes a Pictet–Spengler cyclization for the construc-
tion of a crucial intermediate followed by an intramo-
lecular phenol ortho-arylation reaction with subsequent
removal of the oxygen functionality.
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A retrosynthetic analysis of 3 is shown is Scheme 1.
Disconnection of the methyl amine of 3 gives a pro-
tected nor-aporphine 5. This material was envisioned to
arise from phenol 6 through a de-oxygenation reaction.
The 1-hydroxyaporphine derivative 6 was anticipated to
evolve from a benzyl tetrahydroisoquinoline derivative 7
employing an intramolecular phenol ortho-arylation
reaction.

The initial task was the construction of the requisite
benzyl tetrahydroisoquinoline derivative 7. In the syn-
theses of 1 and 2 similar compounds (Pg¼CO2Me) were
prepared utilizing a Bischler–Napieralski cyclization
followed by reduction of the resulting imine and con-
version of the amine to a methyl carbamate.5 However,
with Bischler–Napieralski substrate 8 that lacks an
alkoxy group para to the site of cyclization, the reaction
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failed (POCl3, CH3CN, 65 �C) to give imine 9. There-
fore, an alternative route was pursued.
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Barn et al. has recently shown that tetrahydroisoquin-
olines that lack electron-donating groups on the aryl
ring could be prepared utilizing a Pictet–Spengler reac-
tion between phenethylamine sulfonamides and ali-
phatic aldehydes in warm trifluoroacetic acid (TFA).9 In
pursuit of testing this strategy 4-methoxyphenethyl-
amine, 10a, was readily converted to sulfonamide 11 in
DMF and in the presence of i-Pr2EtN in excellent yield
(Scheme 2). The sulfonamide was allowed to react with
phenylacetaldehyde in TFA at 70 �C for 5 h to give the
tetrahydroisoquinoline derivative 15 in 69% yield, pre-
sumably through an intermediate such as 14. Having
demonstrated the effectiveness of this strategy for the
synthesis of benzyl tetrahydroisoquinolines it was next
applied towards the synthesis of (±)-aporphine. Tyr-
amine, 10b, was first converted to sulfonamides 12 and
13. These materials were allowed to react with 2-bromo-
phenylacetaldehyde (generated at room temperature
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Scheme 2. Reagents and conditions: (i) 4-R–PhSO2Cl (R¼NO2 or Me), i-P

5 h, 51–69%.
from 2-bromophenethyl alcohol with PCC in dichloro-
methane for 1.5 h)10 to give the tetrahydroisoquinoline
derivatives 16 and 17 in moderate yields.11

An intramolecular phenol ortho-arylation reaction was
attempted with sulfonamides 16 and 17 utilizing previ-
ously developed conditions, substoichiometric quantities
of palladium acetate (20 mol %) and tricyclohexylphos-
phine (Cy3P; 40 mol %) in the presence of cesium car-
bonate (3.2 equiv) in dimethylacetamide (DMA) at
110 �C for 24 h (Scheme 3).5;12 In the case of 16 no iso-
latable product was obtained, apparently due to insta-
bility of the p-nitrosulfonamide to the basic reaction
conditions. However, the tosylsulfonamide 17 readily
cyclized to give the aporphine derivative 18 in moderate
yield.13 The hydroxyl group was next converted quan-
titatively to the aryl triflate 19 in the presence of triflu-
oromethanesulfonic anhydride (Tf2O) and 2,6-lutidine
in dichloromethane. The aryl triflate was reduced using
palladium acetate (10 mol %), a phosphine ligand
(10 mol %) and triethylammonium formate at 80 �C.14

Utilizing triphenylphosphine as ligand gave 20 in low
yield (33%). However, with 1,10-bis(diphenylphosph-
ino)ferrocene (DPPF) as the ligand the yield of 20 was
improved to 77%. The tosylamide 20 was reduced using
sodium naphthalenide to give 21 in 89% yield.15 In this
reaction, a solution of 20 in dimethoxyethane (DME)
was titrated with a dark-green solution of sodium
naphthalenide (prepared by stirring a mixture of sodium
and naphthalene in DME at room temperature for 3 h)
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Scheme 3. Reagents and conditions: (i) Pd(OAc)2 (20 mol%), Cy3P (40mol%), Cs2CO3, DMA, 110 �C, 24 h, 56%; (ii) Tf2O, 2,6-lutidine, CH2Cl2,

0 �C, 30min, 100%; (iii) Pd(OAc)2 (10 mol%), DPPF (10 mol%), Et3N, HCO2H, DMF, 80 �C, 24 h, 77%; (iv) Na, NpH, DME, )56 �C, <5min, 89%;

(v) 37% aq CH2O, MeOH, rt, 30min then NaBH4, rt, 1 h, 84%.
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at )56 �C. After the endpoint was reached (indicted by a
persistent green colour) the reaction mixture was
immediately quenched with a saturated aqueous solu-
tion of sodium bicarbonate and the resulting mixture
was allowed to quickly warm to room temperature.
Finally, the amine 21 was converted to (±)-aporphine, 3,
in 84% yield by reductive amination with 37% aqueous
formaldehyde in the presence of sodium borohydride.16

The 1H NMR spectra of the synthetic product was
identical to that previously reported for the natural
product.8a

In conclusion, a strategy for synthesizing aporphine
alkaloids that lack oxygen functionality at the 1- or 2-
positions of the 5,6,6a,7-tetrahydro-4H-dibenzo-
[de,g]quinoline ring system was described and applied to
the synthesis of (±)-aporphine. A Pictet–Spengler cycli-
zation of N-tosyl tyramine with 2-bromophenylacetal-
dehyde was utilized for assembling a vital benzyl
tetrahydroisoquinoline intermediate. Next, a palladium-
mediated intramolecular phenol ortho-arylation reaction
employing tricyclohexylphosphine as co-catalysts in the
presence of cesium carbonate provided an aporphine
precursor, which was readily converted to the natural
product. Further applications of transition-metal medi-
ated intramolecular phenol ortho-arylations for the
synthesis of other aporphine alkaloids as well as other
classes of natural and nonnatural compounds are
underway.
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